
*IEEE SSCI 2013, accepted Jan 2013.

Evaluating Actuators in a Purely Information-Theory

Based Reward Model
*

Wojciech Skaba

AGINAO

Trubadurow 11

80205 Gdansk, Poland

wojciech.skaba@aginao.com

Abstract—AGINAO builds its cognitive engine by applying self-

programming techniques to create a hierarchy of interconnected

codelets – the tiny pieces of code executed on a virtual machine.

These basic processing units are evaluated for their applicability

and fitness with a notion of reward calculated from self-

information gain of binary partitioning of the codelet's input

state-space. This approach, however, is useless for the evaluation

of actuators. Instead, a model is proposed in which actuators are

evaluated by measuring the impact that an activation of an

effector, and consequently the feedback from the robot sensors,

has on average reward received by the processing units.

Keywords—artificial general intelligence; self-programming;

epigenetic robotics; NAO robot; intrinsic reward; autonomous

mental development;

I. INTRODUCTION

Epigenetic robotics addresses the question of autonomous
mental development by applying a control program – herein
referred to as the cognitive engine – embedded in a physical
robot that is interacting with the natural environment. The task
may be characterized by the following features: (a) the engine
doesn’t have any a priori knowledge on the nature and meaning
of its sensors and actuators, possibly not even on a distinction
between being a sensor/actuator or not, (b) the computational
resources of the engine are limited, the world partially
observable, the flow of sensory data overwhelming, and the
learning conducted in real time, (c) the objective of the task –
referred to as the global fitness function – is a rather general in
nature and not directly transferable to low level technical
implementation; the fitness function is not given, either, thus
must be carefully selected by the engine designer, (d) the
engine must learn the rules of its embodiment and eventually
the higher level mental skills, e.g., the understanding of a
distinction between its body and the outer world, possibly the
understanding of the existence of other independent intelligent
agents. We would add yet another feature, not shared by all
dealing with the domain: (e) the actuators and the sensors are
accessible in raw format, i.e., without or with very little pre-
/post-processing.

All of the listed above features, besides their obvious
disadvantages, have one common advantage: we do not impose
any restrictions on the structure of the emergent architecture,
keeping in mind all the failures of the past approaches that have

apparently assumed too optimistic constraints on the approach
to artificial intelligence.

II. THE AGINAO PROJECT

A. The AGINAO Self-Programming Engine

A detailed presentation of the construction of the AGINAO
self-programming engine is presented in [1]. What follows is
an excerpt essential for the presentation of the paper thesis.

The AGINAO cognitive engine uses the NAO robot by
Aldebaran Robotics as a testbed. The emergent architecture of
the cognitive engine is constructed as a control program
executed on a devised virtual machine (VM). Functionally, the
control program is robot-embedded, though technically it is
executed on a remote and more powerful host, connected to the
robot via a wireless link; the robot to act as an interface to the
outer world only. The architecture of the cognitive engine is
open-ended and adjusted for real-time adaptability.

The operation of the cognitive engine is based on a
conjecture that any algorithm, including the hypothesized
algorithmic artificial mind, is computable on a Universal
Turing-Machine (UTM) – the Church-Turing thesis, and that a
suitably designed VM will have the flexibility and power
comparable to a UTM. On the other hand, however, the target
algorithm – any of the possibly infinitely many accomplishable
implementations – is unknown.

This approach assumes a somewhat random construction of
the target algorithm, and its evaluation during the learning
process. The creation of such an algorithm as a single piece of
code is theoretically sound but at best intractable [2]. Various
methods have been attempted to deal with the incomputability-
intractability question, to list a few [3], [4]. AGINAO builds its
cognitive engine as a hierarchy of interconnected data-
structures, named concepts, each with a built-in piece of
executable code, named codelet. The unidirectional links
between concepts specify both the order the concepts are
applied (executed) and the data-flow between the concepts.
Typically, the output of each concept becomes an input of
many other of its descendents.

The cognitive engine is not a neural network, however.
Concepts from the hierarchy stand for a repository of programs
to be executed on the mentioned above VM. The system is

capable of running many threads concurrently, not excluding a
concurrent execution of multiple copies of the same concept's
codelet, most likely processing different data.

There are also special-type predefined atomic concepts
connected to the robot sensors and actuators. For the cognitive
engine, they look much like regular concepts but their
implementation lacks a codelet; a hidden [for the cognitive
engine] functionality is encoded instead. The sensory concepts
are integrated to the hierarchy as the roots, while the actuator
concepts as the terminal leaves.

During the continuous operation of the cognitive engine,
the candidates for regular concepts are generated by a random
process. The created codelets are tiny programs, consisting of
typically 4–10 instructions (symbols of the input alphabet) of
the VM. The instruction-set resembles those of early 1980s
microprocessors. By virtue of their compactness, the codelets
are easily tractable. Starting from its creation, a codelet passes
through the following mutistep process of evaluating its
validity and applicability, resulting in the majority of the
preliminary codelets to be discarded:

• Heuristic-search in program-space applies tricky
heuristics to sort-out pieces of code obviously useless
and imposes many straightforward constraints. This
step is enforced before a codelet is integrated into the
hierarchy.

• Runtime-error detection, performed during codelet
execution, catches fatal errors and protects against
running out of computational resources, e.g., infinitely
looping. A common type of a fatal error is an attempt
to read/write data out of scope.

• Evaluation of the concepts for their fitness to the
overall structure of the hierarchy discards concepts that
are rarely used and those having low value.

The last condition entails the necessity of implementing a
measurement of concept’s value. AGINAO applies a sort of
temporal-difference learning (TD-learning) where concept's
value is computed from both the immediate-reward and the
discounted future-reward. The expected depth of the concept
hierarchy, however, suppresses and consequently invalidates
the discounted reward on long distances, a phenomenon known
as convergence to a suboptimal policy [5].

On the other hand, the discounted reward may be beneficial
on short distances. This may be compared to driving a car. The
driver may estimate the optimal steering policy for a few time-
steps ahead, by observing the obstacles within the visible
distance. With every time step, the horizon also moves one step
forward, and a new policy may be obtained. On the other hand,
anything that happens closer to the destination of the journey
has no effect on the evaluation of the current policy, even if the
opposite traffic has been influenced by that, i.e., carries some
information. It may be said that solving the main problem
(getting to the destination) is biased by a carefully selected
immediate-reward function. AGINAO introduces a notion of
intrinsic-reward (as immediate-reward) based exclusively on
information-theory and calculated from self-information gain
of binary partitioning of the codelet's input state-space.

B. Binary Space-Partitioning and Computation of the

Reward

The application of binary space-partitioning for the
estimation of the immediate-reward was first introduced in [6].
Fig. 1 shows the idea of binary space-partitioning.

Figure 1. Binary space-partitioning

AGINAO uses a unified format for data interchange: a
variable-size vector of integers. The input of a concept may be
depicted as discrete-time points of a spatial-temporal state-
space. The task of the codelet is to separate the positive
(pattern-matching) examples from the negative (non-pattern-
matching). The definition covers temporal patterns, as well.

An illustrative example might be to consider a task of
detecting the letter T. Imagine that the inputs of a 2-input
concept are interpreted as: (1) to signal a detection of a
horizontal bar; (2) to signal a detection of a vertical bar,. The
inputs are connected to the outputs of some lower level
concepts. If non of the bars were detected in the visual scene,
the inputs will not receive data. The values of the input vectors
represent the coordinates of the detected bars. The task of the
codelet is to take the coordinates and check if the spatial
arrangement of the bars matches the shape of the letter T.
Moreover, the bars must coexist in real time. If a match is
found, the output will forward some data vector (possibly letter
coordinates) to other concepts. Otherwise, the execution of that
thread would be abandoned. Possibly, another concept applied
to the same state space could detect letter L.

From the proportion of the Npos positive and Nneg negative
examples, the probability (variable in time) of encountering a
positive example is computed:

 p = Npos/(Npos+Nneg) (1)

The self-information [7], i.e., the amount of information (in
bits) provided by an event of getting a positive example, may
be extracted:

 I = –log2(p) (2)

Since the probability of getting a positive example is p, we
get a measure of mean reward, as average information-gain:

 r = –p log2(p) (3)

The notion of self-information expresses our intuitive
feeling that the more rare an event is, the more information it
entails. On the other hand, expecting a reward from a rare event
is rather risky. The reward function maximizes at p=1/e (Fig.
2). The mean reward, rather than the reward provided by a
positive example, is interpreted as immediate-reward for TD-
learning, for we want to estimate the value of a concept.

Figure 2. –p log2(p)

Self-information is also a special case of Kullback-Leibler
distance from a Kronecker delta representing the matching
pattern to the probability distribution [6], [8].

Worth noting are the following observations:

• Since the partitioning is performed by a codelet, and
the power of the VM is equivalent to a UTM, a concept
is capable of detecting virtually any regularity in the
input data.

• While the algorithm of data partitioning is codelet
specific, the resulting probabilities, and hence the
computed rewards, are input-data specific.
Consequently, for different state-spaces we would get
different measures of reward for a given codelet.

• A codelet may be regarded as a binary non-linear and
unsupervised classifier that is supposed to carry-out not
the best but any partitioning. As a rule, for each state-
space many different codelets will be applied
concurrently. In a continuous process of adding,
evaluating and removing concepts, the cognitive
engine attempts to maintain a subset of the most
valuable concepts for each state-space.

• Only a detection of a positive example is rewarded. A
failure to match a pattern simply cancels the thread and
skips the TD-learning update step.

C. Global Fitness Function

AGINAO employs a notion of [a global] average reward
per time step. Instead, however, of using the discrete time-step
of a Markov Decision Process (MDP), the following function,
based on real-time events and exponential decay, is applied:

 (4)

where Rt is the computed average reward at current real-

time t, Rt0 is the average reward computed at time t0 in the past
(the last time it was computed), rt is the immediate-reward at
the current time t, ρ is a positive constant to control the rate of
decay. The average reward is computed as a single value
shared by all processes of the cognitive engine and updated
every time the immediate reward is received.

The global fitness function is defined as the maximization
of the average reward per time step.

D. Artificial Economics

The cognitive engine as a whole behaves like a complex
adaptive system. The concepts operate as interacting adaptive
agents, collaborating and/or competing, and fighting for the
computational resources, according to the rules of implemented
artificial economics. At every time there is an overabundance
of the codelets requesting access to the VM and awaiting in a
priority queue. Many of these codelets, possibly most of them,
will never get serviced, exactly like in nature, most individuals
will never breed offspring.

For the topic of this paper, it is sufficient to mention that
each codelet’s thread is assigned: (a) priority – a positive
integer governing the order of execution of the codelets, (b)
expiration time – an unconditional deadline for every thread,
(c) resources – a positive integer limit of the utilization of the
VM processing time (in steps). The latter also solves the
challenge of dealing with the halting problem.

The resources are expresses in the same units as the
immediate-reward, subject to a normalization coefficient β>0.
A pattern-matching thread is rewarded with extra resources s
computed as s=βI, where I is the self-information gain in bits.
Depending on the amount of the available resources, the thread
will pass execution and its output data to the descendents, or
abandon.

III. EVALUATING ACTUATORS

A. Problem Specification

From the cognitive-engine perspective, an actuator is
perceived as a concept with known number of inputs and
known minimum sizes of each input (minimum number of
integers of input vector). The meanings of the individual
actuators and the meanings of their inputs are unknown and are
supposed to be discovered during the learning process.

To be executed and evaluated, an actuator-concept must be
integrated into the concept hierarchy. The integration means
connecting the input(s) of an actuator-concept to the output(s)
of the regular ones. Each individual actuator is represented by a
single atomic actuator-concept template. An actuator, however,
may be potentially linked concurrently to different location of
the concept hierarchy, to mean that it could be executed in
different contexts. On the other hand, it wouldn’t be very
beneficial to evaluate a given actuator with a single-value
parameter, shared by all different contexts. To solve this

problem, each atomic actuator-concept T is copied before being
connected to the hierarchy; then the copy Ti is evaluated
independently in each context. A future possible removal of a
one of the copies, due to low value, will not invalidate the other
copies. This approach, however, implies the question of
resolving some conflicts, discussed below.

B. TD-learning Rule for Actuator

For regular concepts, the value Qi,t of action ai at time t is
updated according to the following TD-learning rule:

 (5)

where ri,t+1 is the immediate reward at time t+1, α is the
learning rate, γ is the discount factor, and V is the weighted
average of values of all actions of the concept the action ai
points to, computed from the equation:

 (6)

Where pi is defined by (1). The probability of selecting
action ai at time t is defined as:

 (7)

The above definition of TD-learning rule is not applicable
for the actuators for many reasons: (a) actuator-concepts do not
contain a codelet that computes the immediate-reward, (b) the
actuator-concepts do not really partition the state-space, but
merely function as a physical-actuator proxy, (c) the
computation of the weighted average value V is impossible due
to the fact, that actuator-concepts are terminal-leaves and do
not connect to next actions/descendents. What follows, the
immediate-reward must be removed from the TD-learning rule
equation, and the weighted average value must be replaced
with a value of an actuator-concept evaluated independently.
Effectively, for the next-to-last [the terminal] concept in a
chain we get the following formula:

 (8)

where Ai,t+1 is the independently evaluated estimation of
actuator-concept at time-step t+1.

C. Basic Idea of Actuator-Concept Evaluation

The idea of evaluating the actuator-concepts is based on an
assumption that, rather than introducing a new source of

reward, we would exploit the already defined information-
theory based reward.

Let us consider first what happens when an actuator is
activated, and take a robot's arm movement as example. We
anticipate that the resulting impact on the environment will be
reflected in robot's sensors. To focus attention, consider the
visual sensory system. The robot's arm repositioning may cross
the visual field, or not. It will result in observing/detecting a
pattern in the former case, and not in the latter case. According
to the discussed above rules of artificial economics, only the
former case will be rewarded with information-gain and
resources. What follows, we want to maintain the concept
structures responsible for the observed feedback and discard
those which effect on the sensors is unknown.

D. Actuator's Cost Function

Before continuing, we have to make yet another remark.
Every thread is given a resources limit. For regular concepts,
this is interpreted as the limit for the VM processing time. As
for the actuators, since we want to observe the rules of artificial
economics, we have to convert the resources to the physical
energy-consumption equivalents of the effectors, herein
referred to as the cost. The mind-body energetic
correspondence – natural in the living organisms – must be
simulated in case of the robotic embodiment.

The cost of activating a given actuator is not fixed, but
depends on its input parameters, like range of the arm
movement. We don't know the meanings of the actuator-
concept inputs, however, not even if increasing the input's
vector value increases the movement range and the cost of
actuator’s activation. The details of internal implementation are
hidden for the cognitive engine.

Yet another question arises: a typical cost of actuator
activation – if expressed in the same units as the resources – is
much beyond the average resources assignment of a thread.
This observation seems quite obvious, if one compares energy
dissipation of a robot motor and that of executing a few
hundred instructions by a contemporary PC. What follows, an
activation of an actuator must result from many consecutive
requests to the actuator-concepts of a given actuator.

Let's assume that the cost of activating an actuator Ti is
given by function Ci(x1,...,xn), where x1,...,xn are the input
parameters (vectors of integers, the internal data format), n>0;
With each request to execute actuator Ti some resources si,j are
passed to it. A naïve approach to deal with the activation
problem would be based on implementing an actuator as a
resources integrator. Once the combined resources have
exceeded the cost threshold, the actuator would be activated:

 (9)

We encounter a problem here, however, if the consecutive
requests differ in the input values (x1,...,xn), i.e., if the actuator
receives contradicting requests, like: move the arm left and
right. Any summing of the resources in such case is senseless,
as the requests come most likely from different contexts.

Attempts to overcome this problem by, e.g., computing the
weighted average of the request-commands' inputs, or
computing independent sums for each set of input parameters,
until any of them exceeds the threshold, seems inappropriate.
If, on the other hand, the input parameters differ insignificantly,
we have to figure out whether count them together or
separately. If the summing takes too long, the very first
requests seem somewhat depreciated, and should not be taken
into account.

We propose a solution based on a notion of probability of
executing an actuator, computed as:

 (10)

This approach solves all the problems mentioned above. It
also assigns higher probability to stronger signals (resources),
that might differ significantly if the requests come from
different contexts. A higher probability is also assigned to
lower cost actions, e.g., an arm movement on a shorter distance
is more likely.

One might observe that if the consecutive input vectors
(x1,...,xn)

1
 are fixed [constant], if S = {si,1,...,si,m}, m>0, and:

 (11)

 then:

 (12)

that means that on average we get the same frequency of
activating an actuator as in the case of a resources integrator
(9), i.e., exactly what would be expected.

E. Evaluating the Actuator Concept

Now imagine that an actuator was activated and we expect
that – after some delay, currently unknown, but counted in tens
or hundreds of milliseconds rather than nanoseconds – we
receive a feedback, that will be reflected in robot's sensory
system as increase of immediate-reward. At this point, we have
completely no idea in what portion of the concept hierarchy
would the impact be observed. The only available measure of
the impact is the change of average reward per time step,
defined by (4).

Let Χi,to = Ci(x1,...,xn)/β at time t0 , i.e., the time
2
 the actuator

Ti was activated. Χi,to is just the cost recorded at time t0 and
expressed in bits, i.e., the cost related to the current input vector

1 It is a vector of vectors of integers.
2 Again, we are using alternately the notion of time t as time-step of MDP, or
as real-time. The distinction should be read from the context.

(x1,...,xn). At time t>t0 , i.e., after t-t0 delay, the following value
update rule is performed:

 (13)

where Rt are Rt0 are average rewards per time step
computed at times t and t0 , respectively, α is the learning rate,
1≥δ>0 is a normalization coefficient. The value Rt – Rt0 may
be negative. Even if Rt – Rt0 = 0, the Ai,t will decrease, due to
the cost term. If Ai,t goes below a predefined positive threshold
limit, the related actuator-concept will be removed.

The δ coefficient was introduced to take into account the
fact, that the time delay t-t0 is relatively long. What follows,
many concurrently activated actuators might have influenced
the change in average reward, before the update rule (13) was
performed. We have to share the change of average reward
among all active actuator-concepts. Consequently, the δ
coefficient must be implemented as a function δ(t) rather than a
constant. In the current implementation, δ(t) is defined as 1/N,
where N>0 is the number of actuator-concept that have
activated the actuators but have not passed the value-update
step yet.

F. Possible Future Improvments of the Evaluation Method

The presented above method of actuator-concept evaluation
is quite limited for the following reasons:

• even if no actuator is activated, the average reward is a
rather volatile function of time, due to both the internal
cognitive processes and the events in the environment
not related to robot actuators; what follows, not all
changes in the average reward level may be attributed
to actuator’s activation,

• the temporal delay t-t0 is unknown and most likely
variable. The delay is caused by at least the following
three phenomena: (a) the inertia of the actuator, (b) the
time the environment reacts to an action, (c) the time
the sensory data propagates through the concept
hierarchy. The latter to mean that the average-reward
change function is closer to a normal or Boltzmann
distribution rather than a single peak, for the extra
reward may come from many levels of the concept
hierarchy. An attempt to determine experimentally a
typical delay is presented in section on experimentation
(Fig. 3).

We have to highlight that this study focuses on simple
reflexes, expected to happen within a couple of seconds at
most. We do not consider feedbacks that would require
sophisticated world-modeling. The purpose of the learning is to
establish the functionality of the actuators, and then suppress
further evaluation. Once the functionality is established, the
value of each actuator-concept Ai is propagated as discounted
reward via (8), and then via (5).

The effect of suppression is currently implemented by
analogy to the method of estimating the probability of

exploration
3
, presented in [1]. Let’s assume that for an actuator

T there exist copies T1,...,Tn, n≥0, with the current value
estimates A1,...,An. The probability of exploration step (creating
a new copy Tn+1) is computed as:

 (14)

where Aconst is a predefined constant (estimated
experimentally). With the increasing number n, and increasing
value of each Ai , the probability of adding a new actuator-
concept’s copy Ti decreases, and effectively, the evaluation
process for a given actuator T becomes suppressed.
Experiments have been conducted with both limited maximum
value of n (currently 50), and unlimited. In the former case, the
newly created actuator-concept’s copy replaces the one with
the lowest current evaluation Ai.

An improved model of actuator-concept evaluation, that
hasn’t been implemented yet, would focus on an attempt to
extract a subset of concepts actually influenced by each
actuator-concept Ti independently, and determine the temporal
delay, then apply the (13) update rule based on the selected
subset, now with δ=1. This approach would involve the
following steps:

• selection of a set of {concept, time-delay} hypotheses,
independently for each actuator-concept Ti , most
likely with many hypotheses per concept differing in
time delay,

• learning the Bayes net and eliminating the false
hypotheses,

• applying the reward changes of only the extracted
subset of concept for the update rule, now without the δ
coefficient.

The task, as presented above, is too computationally
intensive to be performed on all concepts for all actuators in
real time. An approach must be found to make the problem
more tractable.

IV. EXPERIMENTS

Fig. 3 presents the results of finding experimentally the
impact that a change in robot's visual field has on average-
reward-per-time-step function, especially an attempt to
determine a typical delay of a maximum response. The
experiment was conducted by running the real robot on the real
visual data and concurrently overlapping a disturbance
simulated in software. The data collection step was preceded by
initial undisturbed learning (50 sec). Then, without interrupting
the learning, the visual field was stimulated with strong signal
lasting 100 ms, followed by a 2-sec break, repeated 30 times.
The average reward level was collected with 10 ms resolution
and summed over the repeated stimulation periods. The

3 According to a convention assumed in [1] and [6], we would use the name

exploration for adding a new action, and exploitation for selecting any
available action, not only the most greedy one.

maximum of the response seems to be at around 300 ms from
the beginning of the visual sensory stimulation. The
experimentally established delay may be used as an a priori
probability of the maximum response delay for the Bayesian
learning.

Figure 3. Average-reward change

V. SUMMARY

This paper presented a method of evaluating the actuators
as an extension of the earlier developed method of evaluating
the regular concepts processing sensory data. Both approaches
exploit a purely information-theory based notion of the self-
information gain computed from binary partitioning of
concept's input state-space. Without introducing a new source
of reward, and adopting the paradigm of maximizing the
average reward per time step, the actuators are assessed
according to the impact they have on the global reward.

REFERENCES

[1] W. Skaba, "The AGINAO Self-Programming Engine", Journal of
Artificial General Intelligence: Special Issue on Self-Programming.
Versita, December 2012.

[2] M. Hutter, "Universal Artificial Intelligence", Springer-Verlag, 2005.

[3] T. Schaul and J. Schmidhuber, "Towards Practical Universal Search", 3rd
Conference on AGI, Atlantis Press, 2010.

[4] J. Veness, P. Sunehag, M. Hutter, "On Ensemble Techniques for AIXI
Approximation", 5th Conference on AGI, Springer-Verlag, 2012.

[5] P. Tadepalli and D. Ok. “Model-based Average Reward Reinforcement
Learning”, Artificial Intelligence, vol. 100, Elsevier, 1998.

[6] W. Skaba, "Binary Space Partitioning as Intrinsic Reward", 5th
Conference on AGI, Springer-Verlag, 2012.

[7] T.M. Cover and J.A. Thomas, "Elements of Information Theory", p. 20.
John Wiley & Sons, Inc., 1991.

[8] J. Schmidhuber, J. Storck, J. Hochreiter, "Reinforcement Driven
Information Acquisition in Non-Deterministic Environment", ICANN,
vol. 2, pp. 159-164, EC2 & CIE, Paris 1995

